Poznan Studies in Contemporary Linguistics 38, 2002/2003 pp. 167-185
© School of English, Adam Mickiewicz University, Poznan, Poland

MINIMALIST FACULTY OF LANGUAGE,
COMPUTATIONAL SYSTEM AND LOGIC

JOANNA SADOWNIK

Szczecin University

‘Logika tropi prawde na drzewie gramatyki’
Quine (1977: 56)

ABSTRACT

This paper concentrates on metalinguistic function of logic in the minimalist description of
LgF (Language Faculty) and especially CHL (computational system). It is intended to scruti-
nize the interrelations, 1.e. to tease out those elements of the formal language of logic that are
directly employed by Chomsky in his desription of the faculty of language and computational
system,

1. Introduction

Let me start this presentation with an observation made by Bach (1989) who consid-
ers Chomsky’s major insight into linguistic studies to be the claim that language is a
formal system. According to Bach, the major technical innovation of early genera-
tive grammar was to state the combinatorial properties of language in terms of a for-
mal system. Whether such an assertion is right or wrong may be arguable; neverthe-
less worth considering.

Formalisation seems to confer many advantages. At the deepest level, it permits
one to use logical and mathematical techniques to study the consequences of one’s
hypotheses, for example it helps to determine the expressive power (i.e. strong or
weak generative capacity) of alternative hypothesised combinatorial systems (e.g.
Chomsky 1957, Chomsky and Miller 1963), or it allows to estimate the learnability
of such systems (e.g. Wexler and Culicover 1980). At a more methodological level,
formalisation permits one to be more abstract, rigorous and compact in stating and
examining one’s claims and assumptions. And, as Chomsky stressed in a much quoted

168 J. Sadownik

passage from the preface to Syntactic structures (Chomsky 1957), a formalisation un-
covers consequences, good or bad, that one might not otherwise have noticed.

Therefore in what follows, [am going to take a closer look at the relation of
logic — an undoubtedly formal system, to Chomsky’s minimalist view on language,
esp. to his computational system Cyy; . The reason why I decide to concentrate solely
on his minimalist enterprise is twofold. First, the degree and importance of formalisa-
tion in the earliest works such as The logical structure of linguistic theory (Chomsky
1?55) or Syntactic structures (Chomsky 1957) are considerably different from those in
his Minimalist program (Chomsky 1995) or Minimalist inguiries (Chomsky 1998).
Consequently, the picture of language emerging from them is also different. Second, I
believe 1t to be much more sensible and fruitful to concentrate only on those aspects of
logic that stood the trial of time and passed muster.

[would like to stress here, that I am aware of the fact that formalisation is not an
unmitigated blessing. An excessive preoccupation with logical formality can (but of
course does not have to) overwhelm the search for genuine insight into language. I
personally find the proper formalisation of a theory a delicate balance between rigor
and lucidity on the one hand and flexibility and openness on the other. That is,
enough of 1t should be retained to spell out carefully and precisely what the theory
claims or describes, but not too much in order to keep a more holistic, abstract per-

spective and to be able to render the theory communicative and commensurate with
an intricate network of other theories.

2. Logic as Metalanguage in the description of Language Faculty (I.gF) and Compu-
tational System (Cyy;)

In order to talk-about the metalinguistic function of logic in the description of lan-
guage faculty (LgF) 1t is essential to properly define what logic and what LgF are.
As far as logic is concerned, I may define it — for the purpose of this section — as a
formal system, parallelly to Bach’s definition of language:

(1} Logic — a formal system, i.¢.. a formalised set of elements or well-formed

formulas, creating a certain whole; where formalisability is understood as in
(2) below:

(2) Formalisability — the possibility of framing representative elements or
formulas, of which the relations can be determined according to certain rules

of testing or deduction (cf. a similar though not identical definition in
Strawson 1952: 210).

Such a definition of logic is of course very narrow and completely ignores the
subject matter of logical study. However, what matters mostly for my purposes is its
formal systematicity, and I will only work upon a very small field of logic, such as
e.g. Recursion Theory, algorithms, etc. — see the following pages.

As far as the faculty of language (LgF) is concemed, I may propose the following
preliminary and general defimition, only to plunge into the details immediately after:

Minimalist faculty of Language ... 169

(3) Language Facuity — a component of the human mind/brain dedicated to lan-

guage.
Chomsky (1998: 1)

A particular language Lg is an instantiation of the imtial state of the cognitive
system of the LgF with options specified. Chomsky views Lg as a generative proce-
dure performed by C,; that constructs pairs (T, A) that are interpreted at the
articulatory-perceptual (A-P) and conceptual-intentional (C-I) interfaces, respec-
tively, as ‘instructions’ to the performance systems. 7 1s a PF representation and A is
an LF representation, each consisting of ‘legitimate objects’ that can receive an in-
terpretation (perhaps gibberish). If a generated representation consists entirely of
such objects, we say that it satisfies the condition of Full Interpretation (Fi). A lin-
guistic expression of Lg is at least a pair (T, 2.) meeting this condition — and, under
minimalist assumptions, at most such a pair, meaning that there are no levels of lin-
guistic structure apart from the two interface levels PF and LE.

The language Lg determines a set of derivations (computations) done by Cyr- A
derivation converges at one of the interface levels if it yields a representation satisty-
ing FI at this level, and converges if it converges at both interface levels PF and LF;
otherwise it crashes. Thus, Chomsky (1995: 220) adopts the (non-obvious) hypothe-
sis that there are no PF-LF interactions relevant to convergence.

It seems that a linguistic expression of Lg cannot be defined just as a pair (T, A)
formed by a convergent derivation. Rather, its derivation must be optimal, satisfying
certain natural economy conditions.! Less economical computations are blocked
even if they converge.

According to Chomsky, then, the language Lg generates three relevant sets of
computations: the set D of derivations, a subset D of convergent derivations, and
the subset D, of admissible derivations of D. FI determines D, and the economy
conditions select D,. Since economy considerations hold only among convergent
derivations {cf, Chomsky 1995: 220-221) then the following reasoning is true: if a
derivation crashes, it does not block others; thus, D, is a subset of D

' Chomsky (1998: 9) pursues the question of optimality of Lg much further. He puts forward, not without
some reservations, The Strongest Minimalist Thesis which states that language is an optimal solution to
legibility conditions. It means that LgF satisfying legibility conditions in an optimal way satisfies all other
empirical conditions, t00: acquisition, processing, neurology, language change, etc. Accordingly, it would
seem that the language organ is a perfect solution to minimal design specifications. However, Chomsky
points out that such a conclusion would be a strange and surprising result, therefore interesting to whatever
extent it might be true. From such a perspective, the task of a minimalist program is to explore the possibility
that Lg approaches the above optimal design. |)

170 J. Sadownik

(4)

(D4 © D) @ D — the sets are properly
included in one another

From what I have described in the above paragraphs, one may see that Chomsky as-
sumes that the computational system Cy;; is strictly derivational. This is not, how-
ever, the only possible and right characterisation of the syntax. C,;; may as well be
representational in nature.? In any case, however, we have to remember that the or-
dering of operations is abstract, expressing postulated properties of the LegF of the
brain with no temporal interpretation implied. Accordingly, the terms output and 1n-
put have a metaphorical (metalinguistic) flavour to them.

Another natural condition postulated by Chomsky is that derivational outputs
consist of nothing beyond properties of the items of lexicon (lexical features) —~ in
other words, the interface levels consist of nothing more than the arrangements of
lextcal features. To the extent that this is true, the language meets a Condition of In-
clusiveness, where the relevant condition may be defined as in (5) below:

(5) CONDITION OF INCLUSIVENESS (for the perfect Lg):

Any structure formed by the computation (in particular, ® and 1) is consti-
tuted ot elements already present in the lexical items selected for numeration
(N); no new objects are added in the course of computation apart from rear-

rangements of lexical properties (in particular, no indices, bar levels in the
sense of X-bar Theory, etc.).

Chomsky (1995: 228)

2 The difference in the two assumptions may be reduced to a question whether Cyy, involves succesive

operations leading to (1, A) (if it converges) — derivational approach; or it whether it opcrates in one of any

number of other ways, say selecting two given representations and then computing to determine if they are
properly paired sclecting onc and deriving the other — representational approach.

Minimalist faculty of Language ... 171

The condition, however, is not fully met. Chomsky notes that this cr.:mditif:m
holds virtually of the computation from N to LF (N -» 1), and that standard thenn_es
take it to be radically false for the computation to PF (N — PF). Anyway, the point
is that with sufficiently rich formal devices (say, Graph Theory) cﬂunt.erparts to any
such objects (nodes, bars, indices, etc.) can readily be constructed (der'wed frﬂm.fea—
tures). Then, there is no essential difference between admitting new kinds of objects
and allowing richer use of formal devices.

With regard to the computational system Cyy;, Chomsky (1995: 170) assumes
that the initial state is constituted of invariant principles with options restricted to
functional elements and general properties of the lexicon. A selection ¥ among these
options determines a language. Lg acquisition involves fixing 2; the grammar of the
language states X, nothing more (lexical arbitrariness and PF 'cump?nent aside). In
addition, the principles of UG involve only elements that function at interface levels;
nothing else can be ‘seen’ in the course of computation. .

In detail, a linguistic expression (7, A) of Lg satisfies output conditions at the
PF and LF interfaces. Beyond that, ® and A must be compatible: it is not the case
that any sound can mean anything. In particular, m and A must be based on thﬁe
same lexical choices. We can, then, think of Cy; as mapping some array A of lexi-
cal choices to the pair (7, A). What is A? According to Chomsky (1995: 225), at
least it must indicate what lexical choices are and how many times each 1s selected
by Cy in forming (m, A). Further on, he assumes afnurﬁneration to be a set of pairs
(L1, i), where LI is an item of the lexicon and i is its index, understood to be the
number of times that LI is selected. This can very roughly be represented by the
following drawing:

6) A=2N f:N o {m A}/ fN) = {m A}3

LIl ~ Chr

)
Lly

LI,

\AAs

T, A

* Curly brackets denote an unordered pair.

172 J. Sadownik

Take A to be, at least, a numeration N; Cyy; maps N to (=, A). The procedure C;p
selects an item from N and reduces its index by 1, then performing permissible com-
putations. A computation constructed by Cy; does not count as a derivation at all,
let alone a convergent one, unless all indices are reduced to 0 (zero).

Viewing the language Lg as a derivation-generating procedure, we may think of

it as applying to a numeration N and forming a sequence S of symbolic elements (04,
0y, ..., 0,), terminating only if §_ is a pair (%, A) and N is reduced to zero (the com-
putation may go on).* S formed in this way (strictly speaking, an n-element finite se-
quence) Is a derivation, which converges if the elements of 8 satisfy FI at PF
and LF, respectively.” Economy considerations select the admissible convergent
derivations.

Given the numeration N, the operations of Cyy; recursively construct syntactic
objects from items in N and syntactic objects already formed. We have to determine
what these objects are and how they are constructed. Insofar as the Condition of In-
clusiveness holds, the syntactic objects are rearrangements of properties of the lexi-
cal items of which they are ultimately constructed. As an illustration, let me take the
computation N — A.

Suppose that the derivation has reached the stage X, which may be taken to be a
set {SO) SO, } of syntactic objects. Logically speaking, £ may be regarded as a

set being the union of all the elements that appeared in the derivation up to the
given stage:

(7) T =(SO, U SO, U ... USO8

One of the operations of Cyy; is a procedure that selects a lexical item LI from
the numeration, reducing its number by 1, and introduces it into the derivation as
SO, =t Call the operation: Select. At the LF interface, Z can be interpreted only if it
consists of a single syntactic object. Clearly then, Cyy; must include a second proce-
dure that combines syntactic objects already formed. A derivation converges if this
operation has applied often enough to leave us with just a single object, also ex-
hausting the initial numeration. The simplest such operation takes a pair of syntactic
objects (SO;, S0O;) and replaces them by a new combined syntactic object SO;..
Chomsky calls this operation: Merge. Chomsky (1995: 226) states that: “the operzlf-
tions Select and Merge, or some close counterparts, are necessary components of
any theory of natural language”.

Note that no question arises about the motivation for application of Select or
Merge 1n the course of derivation. If Select does not exhaust the numeration, no der-

u - N .
Cf. the analogy between forming S and terminating and the notions of ‘loops’ and ‘halt’ — see p. 183.

5 . . !
An n-clement finite sequence 1s a function defined on a set of all positive integers —dom(f) = 1, ..., n.

See the analogy to the notion of a p-oracle — see p. 181.

Minimalist faculty of Language ... 173

ivation is generated and no questions of convergence or economy arise. Insufficient
application of Merge has the same property, since the derivation then fails to yield
an LF representation at all; again, no derivation is generated, and questions of con-
vergence and economy do not arise. “The operations Select and Merge are ‘cost-
less’; they do not fall within the domain of discussion of convergence and economy.
Similarly, we do not have to ask about the effect of illegitimate operations, any more
than proof theory is concerned with a sequence of lines that does not satisty the for-
mal conditions that define ‘proof’ or a chess playing algorithm with evaluation of
improper moves” (Chomsky 1995: 226). The terms ‘proof’ and ‘algorithm’, used by
Chomsky for intentional comparison, are borrowed from logical Proof Theory and
Recursion Theory, respectively. For the time being (see following pages) and for the
purpose of this presentation I will define them as in (8) and (9) below:

(8) Proof of a theorem T is a sequence of formulae such that the last in the
sequence is formula T, and every element of the sequence is either an
axiom or is derived from previous formulae by the implementation of one
or more rules of inference. cf. Marciszewski (1987: 224)

(9) An algorithm over an alphabet A is every finite sequence of formulas of
the form u — v or u — ev, called substitutions, in which u, v € A*.7
cf. Marciszewski (1987: 193)

A* means here a set of all finite sequences of symbols (‘words’) over the alpha-
bet A, including the empty sequence €. A substitution of the form u — ov is called a
terminal substitution (cf. in our case the pair (m, A)).

As it was already mentioned, Chomsky wants the initial array A (see the ana-
logue in the definition in (9) above), whether a numeration or something else, not
only to express a compatibility relation between 1 and A but also fix the reference
set for determining whether a derivation from A to (m, A) is optimal, that is, not
blocked by a more economical derivation. He suggests that numeration determines
such a set and that only alternative derivations with the same numeration are evalu-
ated for economy. Moreover, the reference set is interpreted in his theory rather lo-
cally, i.e. at a particular stage Z of a derivation, one considers only continuations of
the derivation already constructed — in particular, only the remaining parts of the nu-
meration N.& Application of the operation OP to Z is barred if this set contains a
more optimal derivation in which OP does not apply to Z. The number of derva-
tions to be considered for determining whether OP may apply reduces radically as
the derivation proceeds (cf. (10) below for illustration).

7 Markov’s algorithm, strictly speaking.
8 See the analogy between the optimisation operation and fixing the reference set and S-command — see p.
181.

174 J. Sadownik

Whﬂl’ﬂ ‘global’ properties of derivations have to be considered and optimised,
€.g. In case of determining the applicability of the principle Procrastinate, Chomsky
expects to find some ready algorithm to reduce computational complexity.

(10}
lOP—*El OP — %, |OP—}23
d,
—>
%
» | >

Initial . R R > R > T (TI:, }L)
Numeration d, q S S
(N) >

._d‘;.,. >

dy, dy, d3, d, — competing derivations (i.e. finite sequences of the form § = (8, 8,, ..., 5.));
RS —reference set; T — termination; OP — 2| 5.3 — Optimisation operations to particu-
lar stages

A core property of Cy; is feature checking, the operation that drives movement
under the Last Resort. For the purpose of this paper, I might reduce feature checking
to deletion. This operation, which is a departure from the above mentioned Inclu-
stveness Condition, marks some object as ‘invisible’ at the interface but still accessi-

ble within Cy;; . Chomsky (1995 280) defines the operation of checking and deletion
as in (11) below:

(11a) A checked feature is deleted as possible.
(I11b) Deleted o is erased when possible.

| A stronger form of deletion is erasure, i.¢. eliminating an element entirely so that
it 1s inaccessible to any operation, not just to interpretability at LF. In the logical jar-
gon, especially of the Recursion Theory, to erase means to empty a register on a pro-
gram counter, 1.e. to put a zero (0) in it — cf. Bell and Machover (1977: 233) (see
also subsequent discussion). Chomsky’s erasure stems from such a formal formula-
tion and has the same flavour to it.

Apart from the above operations, Chomsky distinguishes also the cancellation of a
derivation, which is triggered by a mismatch of features (cf. Chomsky 1995: 309,
point 108). Importantly, I should distinguish mismatch from nonmatch: thus, the Case
feature [accusative] mismatches F' = [assign nominative], but fails to match F' = of a
rising infinitival, which assigns no Case. Virtually as well, the cancellation of a deriva-
tion under mismatch should be distinguished from nonconvergence. The latter permits

Minimalist faculty of Language ... 175

a different convergent derivation to be constructed, if possible. But the point here is
literally to bar alternatives. A cancelled derivation therefore falls into the category of
convergent derivations in that it blocks any less optimal derivation; mismatch cannot
be evaded by violation of Procrastinate or other devices. If the optimal derivation cre-
ates a mismatch, it 1s not permitted t0 pursue a non-optimal alternative.

Output conditions show that m and A are differently constituted. Elements inter-
pretable at the A-P interface are not interpretable at C-I, and conversely. At some
point, then, the computation splits into two parts, one forming n and the other form-
ing A. The simplest assumptions, according to Chomsky (1995: 229), are that;

(12a) There 1s no further interaction between these computations;
(12b) Computational procedures are uniform throughout: any operation can

apply at any point.?

He adopts (12a) and assumes (12b) for the computation from N — A, though not
for the computation from N — x; the latter modifies structures (including the inter-
nal structure of lexical entries) by processes very different from those that take place
in N — A computation. Investigation of output conditions should suffice to establish
these asymmetries, which I will simply take for granted here.

Consequently, I assume that at some point in the (uniform) computation to LF,
there 1s an operation Spell-Out that applies to the structure X already formed.
Spell-Out stripes away from X those elements relevant only to «t, leaving the residue
X, which 1s mapped to A by operations of the kind used to form X. X itself 1s then
mapped to m by operations unlike those of the N — A computation. I call (after
Chomsky) the subsystem of Cy;, that maps X to = the phonological component, and
the subsystem that continues the computation from 2; — LF the covert component.
The pre-Spell-Out computation I call overt. It may be assumed further that Spell-Out
delivers X to the module of Morphology, which constructs word-like units that are
then subjected to further phonological processes that map it finally to =, and elimi-
nates features no longer relevant to the computation.

The computation path sketched above may be represented as in (13) below:

? All depends on the procedure, i.€. a program — see subsequent discussion.

176 J. Sadownik

(13)
, PF interface
phonological
component
overt
component Spell
N 1 -Out
covert
component
. LF interface
Initial Spell-Out
Numeration opceration

To complete the picture of the structure of LgF, and Cyy; in particular, I should per-
haps finally add that Chomsky distinguishes two types of lexical features: those that
receive an interpretation only at A-P interface and those that receive an interpreta-
tion only at the C-I interface. He assumes further that these sets are disjoint, given
the very special properties of the phonological component and its PF output:

(14)

PF
features

disjointsets—-ANB=O

Now, since I have presented Chomsky’s minimalist views on language as a gen-
erative procedure, it 1s time to step back and concentrate on those elements of its de-

scription that stem from logic. After a closer look, it 1s possible to distinguish the
following logical notions used metalinguistically:

(15a) Generative procedure (Lg as a derivation-generating procedure)
(15b) Pair (&, A)

(15¢) Set (optimal set, reference set, sets of computations, disjoint set)
(15d) Instructions: input, output

(15¢) Denvations = computations/computational system

(15f) Optimal design (economy conditions)

Minimalist faculty of Language ... 177

(15g) Operations (Select, Merge, Spell-Out)

(15h) Inclusion {Condition of Inclusiveness, proper inclusion of sets)
(15i) Numeration N

(15)) Mapping (of an array A to the pair {x, A))

(15k) Array A

(151) Sequence S (of derivations)

(15m) Stage T (union of set, language states)

(15n) Recursive operations

(150) Proof (used only for comparison)

(15p) Algorithm (for reducing derivational complexity, applying Procrastinate)
(15q) Deletion, erasure, cancelling operations

(15r) Convergence & crashing (of derivations)

(155) Checking of features

(15t) Representation

(15u) Program (minimalist)

All the above mentioned notions and terms can be traced back in formal logic
(logical calculus), mainly in those domains dealing with Recursion Theory, autom-
ata, algorithms and Proof Theory (but also in Set Theory and Theory of Relations).
In what follows, I am going to describe briefly the above aspects of logical study,
with the exception of Set Theory and Theory of Relations which, being of secondary
importance for the main topic of this paper and perhaps requiring separate treatment,
| take for granted here.

The primary task of Recursion Theory is to characterise and study the class of all
algorithmic functions of natural numbers (N - non-negative integers). Roughly
speaking, a function f'is algorithmic if there is an algorithm (i.e. a deterministic me-
chanical procedure) for calculating the value f(0) for any 0 belonging to the domain
of f(where & stands for an n-tuple 8 = <ay, 85, ... , 3, >). Algorithmic functions rep-
resent a class of recursive functions. Recursive functions have been singled out of all
other functions having their arguments and values in N as those that are effectively
computable.10 Effective computation means that there exists a finite description of a
function. This description may be regarded as a finite sequence of symbols. Let us
order these symbols into a sequence (2;, a,, ... , a, ...) that might be infinite. Now,
we are able to find unambiguous correspondence between each description (thus,
each element of the domain) and some natural number. Such a method of finite se-
quence coding has been introduced by Gédle and the numbers matched to sequences
of symbols are called G5dle’s numbers (for details see ¢.g.: Van Heijenoort 1967).

% The fact that all algorithmic functions are recursive is known as Church’s Thesis or Church-Turing
Thesis (for details see e.g. Hoperoft and Ullman 1994: 1921f). v

178 J. Sadownik

(Generally) recursive functions R are the smallest class of total functions that
have unrestricted number of arguments from N and have values from N;, and that
fulfil the following conditions:

(16a) Consequent function S, i.e. S (x) = x+1, zero function Z, ie. Z (x) = 0
for every x, and functions U}, where U/ (x,, ... , x,) = x, for any » and
i < n, all belong to ‘R.

(16b) If an n-argument function f and k-argument functions g, g2 5 &,
belong to R, then the function 4 obtained by superposition: 4 (x5, .., X))
=gy Xy oy X)), 8 (Xps o5 X, &, (Xy5 - 5 X)) also belongs to R.

(16¢) If an n-argument function f and (n+2)-argument function g belong to R,
then the function 4 obtained from f and g by a stmple recursion: 4 (0, X1
s Xp) = [(xq, ..., X) also belongs to R,

(16d) If an (n+1)-argument function f belongs to R and it is regular, i.e. for
any X, ... , X, there exists such y that /' (x|, ... , X, y) = 0, then the
n-argument function g obtained from f by a minimum operation: (min y)
f X .oy X, ¥) = 0 also belongs to R.

cf. Marciszewski (1987: 185)

In other words, a function is recursive, if it can be obtained from initial functions
mentioned in (16a) above by a finite number of subsequent applications of opera-
tions mentioned in (16b), (16¢) and (16d).

As 1t was already mentioned, Recursion Theory characterises algorithmic func-
tions. By algorithm, logicians (mathematicians, computer scientists) as well as
Chomsky generally mean a computation procedure whose application leaves nothing
to chance and ingenuity but requires a rigid stepwise mechanical execution of ex-
plicitly stated rules.!! An algorithm is presented as a prescription consisting of a fi-
nite number of instructions. It can be applied to any one of a set of possible inputs —
cach mput being a finite sequence of symbolic expressions. Once any particular in-
put has been specified, the instructions dictate a succession of discrete simple opera-
tions, requiring no recourse to ingenuity or chance. The first operation is applied to
the input and transforms it into a new finite sequence of symbolic expressions. This
outcome 1s, in turn, subjected to a second operation (dictated by the instructions of
the algorithm). It may happen that after a finite number of steps the instructions dic-
tate that the process must be discontinued and an output be read off (‘spelled out’ —
in Chomsky’s terminology, compare previous pages) in some prescribed way from
the outcome of the last step. For some inputs, however, the process may never termi-
nate and there is no last step and hence no output.

Speaking in somewhat more formalised language, I should recall the definition
In point (9) (see page 9 above) according to which an algorithm is a finite sequence

"' See e.g.: Marciszewski (1987), Bell and Machover (1977), Hopcroft and Ullman (1994).

Minimalist faculty of Language ... 179

of formulas. I ought to add here that the order of occurrences of given fnrmula‘s 1S
important. Moreover, the substitutions may be exemplified in the following fashion.
Let me take a linguistic example. It can be said that the substitution s =u — v (or s
= u — ev) is applicable to a word: x € A*, if u is a root-word of the word x. Fu@er-
more, a word y is derived from the word x by a substitution s (applicable to x), if' y
is created from x by a substitution of the first-from-the-left occurrence of the
root-word u 1n the word x by a word v.

If MA is a Markov’s algorithm, then for every word x € A* it is possible to de-
fine, in the following manner, exactly one sequence (finite or infinite) x, ..., X, ... of
words over the alphabet A — marked as COMP,, (x) (see an analogue to a natural

language’s generative capacity):

(17a) x5 = X | |
(17b) Suppose that for some k > 0, x; has been specified. Two mstances are to
be considered:
I. If there exists a substitution applicable to x; in MA, then x; ; is a word de-
rived from x, by the first substitution (in a sequence of substitutions form-
ing MA) applicable to x,.
1. If there exists no substitution applicable to x, in MA, then x, is the last ele-

ment of the sequence COMPy,, (X).
cf, Marciszewski (1987: 194)

A partial function (i.e. 1-argument function) F: A* — A* is called algctrithmi-
cally computable (see an analogue to Chomsky’s derivational procedure), 1f there
exists a normal Markov’s algorithm MA over the alphabet A such that for every x €
A* F (x) is defined iff COMP,, 4 (x) is finite and F (X) is equal with the last element
in COMP,,, (x) sequence.!? | |

For every finite alphabet A = {a,, ..., a,} there exists a mutual unambiguous cor-
respondence, called numeration N, (see an analogue for Chomsky’s ter'm) .between
the set A* of all words over the alphabet A and the set of all non-negative integers.

For example:

(18) N (g) = 0;
N (a)) = 1 |
N (a, ... , a) = iy + ik + ink 1 <ij<k

It is said that a partial function f: N; — N, represents a partial function F: A* —
A* in the numeration N, if for every x € A*:13

12" iff = if and only if .
13 Recall that N, stands for non-negative integers — see p. 177.

180 J. Sadownik

(19a) F (x) 1s defined iff f (N (x)) is defined,
(19b) N (F (x)) = f (N (x)).

Taking a more general standpoint, it can be said that a function f'is representable
In a calculus if the statements of the form ‘f(6) = b’ (with this particular f) which do
have such formal proofs are precisely the correct ones. If the calculus is set up in a
suitable way, all functions representable in it will be algorithmic.!4 Now, I would
like to recall the definition of a proof, given in point (8) in the context of
Chomsky’s discussion — see page 9 above. Having observed that syntactic notions,
such as claims and derivability are defined in terms of inference rules and can be ex-
pressed with the use of some formal calculus (and other formal devices), Chomsky’s
comparison turns out to be quite apt and intentional. More to that, rules of inference
can be applied not only to axioms and theorems, but also to any set of formulas. Let
me take Chomsky’s sequence S = (§, 8,, ..., 8,), (see page 7 above), in short (6,),
and the pair (r, &) being the result of subsequent application of inference rules, be-

ginning with (5,). Then, we can say that (m, &) is derivable from (0,)- This can be
written symbolically as:

200 8, kgt (=, A)13

As 1t was already mentioned, recursive functions (hence algorithmic ones as
well) are effectively computable. An important analysis of effective computation
was conducted by Turing and Post.!¢ They introduced ‘ideal’ machines, called Tu-
ring’s machines, which operate in a deterministic fashion, step by step, without er-
rors, and which are not restricted by memory limitations and working time (i.e. they
are finite but as capacious as demanded). Needless to say, functions computed by
such machines are recursive functions. Some very simple functions can be computed
by some ideal machines less complicated than Turing’s machines. They are called fi-
nite automata and are closely related to the notion of a formal grammar introduced
by Chomsky in the 1950s. Formal grammars turned out to be very useful not only
for natural language studies but also for studying artificial languages of computer
programming. More importantly from the point of view of this work, though,
Chomsky’s minimalist idea of the computation of derivations proceeds analogously

to the above mentioned machines — in a deterministic way selecting freely from the
lexicon at any stage.

" For this it is sufficicnt that there should be some cffective procedure for enumerating, one by one, all the
deductions of the calculus. Then, iffis a representable n-ary function and 8 is any n-tuple, we can calculate f
(0) by systcmatically searching for a formal proof of a statement of the form *f (8) = b’. This yields an
algorithm for /- cf. Bell and Machover {1977).

P STisa system to which the terms are relative. For the form of symbolic script see Marciszewski (1987:2241).
'® Sce e.g.: Post (1936, 1943, 1946), Turing (1936).

Minimalist faculty of Language ... 181

Let me take a closer look on such a machine, an ideal, imaginary one — being a
Turing’s version or its close counterpart — in order to highlight further meta linguisti-
cally used words from the chart in (15). [will call my machine a “computer ALM" —
an algorithm-{program, instruction)-computing machine. I assume that the computer
has a finite sequence of registers R, (i = 1, 2, ...). I call the positive number i the ad-
dress of the /0 register R.. The registers are designed to be storage places for the in-
puts, outputs and intermediate stages of a computation. I assume that at each mo-
ment in time every register stores some natural number. In addition, my 1deal
computer has a program counter K, which also contains at each moment some natu-
ral number.!7 Tt is said that a register or the counter K is empty when the number
stored in it is 0.!8

[shall assume also that any number, however large, can be stored in each register
and in the program counter. From this, it would seem that I require ALM to be able
to store an infinite amount of information. However, in fact, I shall always assume
that at any moment almost all (i.e. all but a finite number of) the registers are empty.
Moreover, each program will only make use of a finite number of registers, whose
addresses can be read off directly from the program itself. Thus, I need only an un-
limited — but in each case finite — number of registers (see an analogue to a natural
language). Even so, the amount of information that can be stored in the computer, al-
beit finite, is unbounded.!”

[furthermore assume that the computer can obey four commands as follows:

(2la) Z commands. For each positive i, the command Z; is obeyed by erasing
the /b register (i.e. causing R. to become empty) and adding 1 to the
computer program counter K (i.e. causing the number k be replaced by
k+1). The other registers remain unchanged.2’

(21b) S commands. For each positive i, the command S, is obeyed by adding 1
to both R; and K. The other registers remain unchanged.

(21c) A commands. 1 suppose that ALM has been linked up to a ¢-oracle.?! Let
i be a positive number and suppose that at a given moment the number
stored in R; is ». Then the command A, is obeyed by putting ¢ (r) 1n

' This number will notbe a part of a computation but merely a position marker for book-keeping purposes.

'® The term ‘empty’ might be traced in Chomsky’s Minimalist Program in the context of categories; an
cmpty catcgory may be a metalinguistic analoguc of an empty register.

'* This term occurs in its metalinguistic sense in Chomsky’s Binding Theory.

** Notice another term ‘command’ that is taken from logical jargon and employed by Chomsky
(c-command, m-command) in his description of phrase structure.

! @-oracle: if ¢ is any sequence (i.c. a total unary function), then a ¢p-oracle is an agency able to supply the
valuc ¢ (r) for cach r. It must be stressed that an oracle is not assumed to be a computer—in fact, it cannotbe a

computer unless @ happens to be algorithmic — cf. Bell and Machover (1977: 233). [do not consider oracles
to be a part of my ALM but external to it.

182 J. Sadownik

place of r in R, and adding 1 to K. The other registers remain

unchanged. The number ¢ () is to be obtained by the computer from the
(p-oracle.

(21d) J commands. Let i and j be positive and let & be any number. Suppose
that at a given moment the numbers stored in R, and R; are r; and r;.

Then 1f r; = r;, the command J;;, is obeyed by putting k in K instead of
the number that was stored there previously. If r; = r., then J. . K 18
obeyed by adding 1 to K. In either case, all other registers renfzijfn
unchanged.

Bell and Machover (1977: 234)

All together, I have commands Z,, S;, A; and J i j, k for all positive i and j and all £.

Importantly for this paper, I should observe the similarity between Chomsky’s
derivational procedure done by Cy;; (an analogue of the computer) and the above
program. Precisely speaking, the following notions from logical and linguistic de-
scriptions can be identified or at least compared: my ALM ~ Cyyp, registers are lin-
guistic items and addresses LIs’ indexes, command Z bears resemblance to
Chomsky’s operation Select, command § has the function of “steps-supervising’ and
might constitute sort of a reference set in the optimisation operations thus playing a
role in determining most economical derivations, command 4 can be identified with

operation Merge, @-oracle may be regarded as a set 2(S0O,)) being the union of all the

clements that appeared in the derivation up to a given stage, and finally command J

1s similar to feature checking.

I have just called the above commands a program. I should be more specific
now. By a program I mean any finite sequence of commands:

(22) Pr =< CD, Cl’ sar g Ch—l >
Bell and Machover (1977: 234)

Here £ 1s the length of Pr, i.e. the number of its commands. For any k < A, I call
Cy the &'h command of Pr. Thus, Pr begins with its 0" command, not with its 1%. The
addresses occurring in a program Pr are precisely those positive numbers / and j for
which Z;, S;, A; or (for some &) J; i, k are in Pr.

It I observe here that the functioning of the whole Chomsky’s Cyy. 18 constructed
along the lines of the above logical formulation of a program, which should become
quite obvious by now, it is also possible to attribute to the name: ‘minimalist pro-
gram’ a profound dimension. One can see that under the surface of that name —
given to mean a new direction of development of linguistic studies — there lies a
pretty technical, formal layer.

On the previous pages, I have described how Chomsky’s linguistic ‘program’ of
LgF wc-ks, 1.e. I showed the stages of derivation performed by Cyr — @ minimalist
‘computer’ wihin the brain. Now, it is time to present how its logical counterpart
(that was Chomsky’s model) operates, making use of the commands from (21). Now

Minimalist faculty of Language ... 183

then, I suppose that the computer operates under a given program Pr and that it has
been linked up to some oracle. When ‘switched on’, ALM will go through a finite
(or infinite) succession of steps. Each step consists of obeying some command of Pr.
Furthermore, at a given moment, the number stored in K 1s k. If & < length of Pr, the
next step will be to obey the 4" command of Pr. However, if k& > length of Pr (so that
Pr has no &t command), then the computer halts — it ‘switches itself off” and does
not perform any more steps.

[shall always assume that initially — i.e. before ALM begins to operate, the pro-
gram counter K is empty. Thus, the commands of Pr are obeyed one by one in order;

except that when a command J; ; | 1s obeyed and the numbers stored in R, and
R; happen to be equal, then the next command to be obeyed will be the &P command
of Pr (or, if £ = length of Pr, the computer will halt). In other words, if the numbers
in R; and R; are equal, a command J; ; , makes ALM jump to the kM command
rather than proceed in order.

I shall also assume that initially almost all the registers are empty. It is easy to
see that if my computer is operating under the program Pr, the only registers that
might affect the process or be affected by it are those whose addresses occur 1n Pr.
Thus, almost all the registers remain empty throughout and play no role at all.

Let me consider the following example (cf. Bell and Machover (1977: 23511)).
Let i and j be positive. I construct a program Pr;,; whose effect is to copy the number
initially stored in R; into R;. In linguistic terms the example is to illustrate a stmpli-
fied version (for the sake of clarity) of a derivation prior to merger of linguistic
items and introduction of the ¢-oracle. All registers other than R, are to be left un-
changed. In particular, R, will retain its initial contents. If i = j, then the empty pro-
gram will do the job. Now, let i # j. [begin by setting up a flow chart which shows
how I want the required program to work (see fig. 1n (23) below).

START

» HALT

184 J. Sadownik

A diamond-shaped box represents a question (in the present case: ‘Are the num-
bers stored n R; and R; equal?’ = “Are the features of LIs selected from the numera-
tion matching?’). Two arrows lead away from the diamond corresponding to the an-
swers “Yes' and ‘No’; they are labelled accordingly ‘Y’ and ‘N’. The rest is
self-explanatory.

By following the chart, the reader can see how my program is supposed to work.
First, R; 1s erased — LIs are selected for derivation. Then, the computer enters a
‘loop’ and goes round and round as long as the numbers in R; and R; remain differ-
ent — features are matched.2? Each time round, it adds 1 to R; - thmugh a reference
set optimisation 1s applied. When the number in R, bemmes equal to that in R,,
ALM gets out of the loop and halts — features are matched and computation could
now go on, had there been some further command in the Pr, e.g. Merge.

Now, I will convert the chart into an actual program. I start at the entrance of the
chart (marked ‘START’) and work out way long, following the arrows. My 0% com-
mand 1s Z;. Next, the first command, which corresponds to the diamond, must, of
COurse, bf:: of the form J; . . I leave the third index blank, to be filled later on; this
third index will determme the jump that the computer will have to make when the
numbers in R; and R; are found to be equal.

In the meantime, I follow the arrow labelled ‘N’, which corresponds to the case
where the numbers in R, and R; are different, and it does not involve a jump. The
next command will thus be S;. After this, I have to make ALM jump back to the dia-
mond command J; ; , which was the 15' command. I therefore take my next com-
mand to be J, | ;: . the number in the register R, will, of course, be found to be equal
to 1tself, and the machine will therefore jump back to the 1t command, as required.
(Instead of J, | |y, | can be used with any positive p.)

Now, that I have come back to the diamond, I have all the commands I need.
Since the length of my program is 4 (there are 4 commands), I can fill the blank in

J;;, with 4 (or with any number > 4). Thus, I have constructed the program Pr;,; :

(24) Priy=<Z,J i 4 S, Ty, >

1, j, 42
Bell and Machover (1977; 326)

Finally, I ought to observe that this description of the above machine and the pro-
gram bears considerable similarity to Chomsky’s procedure of determining the
proper pair (m, A). More to that, one can find some resemblance between the flow

chart in (23) and the computation path in (13), although this fact may not seem that
straightforward at first.

* For linguistic counterparts of a loop and halt see note 4.

Minimalist faculty of Language ... 185

2. Summary

Summing up this paper on metalinguistic function of logic in Chomsky’s minimalist
description of LgF and Cy,, it has to be said, first of all, that his usage of certain
logical notions is unquestionable (which, I hope, I have lucidly shown). Secondly,
thanks to employing logic — viewed as a formal system — he enriched his description
with additional layer and precision. Finally, and most importantly, he formahsed
LgF and C,y;, i.e. made it possible to frame these abstract entities of mind within the
boundaries of logical calculus.

REFERENCES

Allwood, J., L.G. Andersson and O. Dahl, O. 1977. Logic in linguistics. Cambnidge: CUP.

Bach, E. 1989. Informal lectures on formal semantics. Albany, N.Y.: SUNY Press.

Bell, J. and M. Machover, M. 1977. 4 course in mathematical logic. Amsterdam: Elsevier Science
Publishers.

Chomsky, N. 1957. Syntactic structures. The Hague: Mouton.

Chomsky, N. 1995, The minimalist program. Cambridge, Mass.: MIT Press.

Chomsky, N. 1998, Minimalist inquiries: The framework. Ms.

Chomsky, N. and G. Miller. 1963. Introduction to the formal analysis of natural languages. In
Luce, R.D. et al. (eds.). Vol.2. 269-322,

Hopcroft, J.E. and J.D. Uliman. 1994. Wprowadzenie do teorii automatow, jezykéw i obliczen.
Warszawa: PWN.

Luce, R.D., R.R. Bush and E. Galanter (eds.). 1963. Handbook of mathematical psychology. New
York: Wiley.

Marciszewski, W. (ed.). 1987. Logika formaina. Warszawa: PWN.

Post, E. 1936. “Finite combinatory processes formulation”. Journal of Symbolic Logic 1. 103-1053,

Post, E. 1943, “Formal reductions of the general combinatorial decision problem”. American Jour-
nal of Mathematics 65. 197-215.

Post, E. 1946. “A vanant of a recursively unsolvable problem”. Bulletin of AMS 52. 264-288.

Quine, W. 1977. Filozofia logiki. Warszawa: PWN.

Strawson, F. 1952. Introduction to logical theory. London: Methuen.

Turing, A.M. 1936. “On computable numbers with an application to the Entscheidungsproblem”.
Proceedings of London Mathematical Society 42, 2. 230-265.

Van Heijenoort, J. {ed.). 1967. From Frege to Godel: A sourcebook in mathematical logic
1879-1931. Cambridge, Mass.: Harvard University Press.

Wexler, K. and P, Culicover. 1980. Formal principles of language acquisition. Cambridge, Mass.:
MIT Press.

	Sadownik_0001.gif
	Sadownik_0002.gif
	Sadownik_0003.gif
	Sadownik_0004.gif
	Sadownik_0005.gif
	Sadownik_0006.gif
	Sadownik_0007.gif
	Sadownik_0008.gif
	Sadownik_0009.gif
	Sadownik_0010.gif

